Expression of myostatin pro domain results in muscular transgenic mice.
نویسندگان
چکیده
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Depression of myostatin activity leads to increased muscle growth and carcass lean yield. In an attempt to down-regulate myostatin, transgenic mice were produced with a ribozyme-based construct or a myostatin pro domain construct. Though the expression of the ribozyme was detected, muscle development was not altered by the ribozyme transgene. However, a dramatic muscling phenotype was observed in transgenic mice carrying the myostatin pro domain gene. Expression of the pro domain transgene at 5% of beta-actin mRNA levels resulted in a 17-30% increase in body weight (P < 0.001). The carcass weight of the transgenic mice showed a 22-44% increase compared with nontransgenic littermates at 9 weeks of age (16.05 +/- 0.67 vs. 11.16 +/- 0.28 g in males; 9.99 +/- 0.38 vs. 8.19 +/- 0.19 g in females, P < 0.001). Extreme muscling was present throughout the whole carcass of transgenic mice as hind and fore limbs and trunk weights, all increased significantly (P < 0.001). Epididymal fat pad weight, an indicator of body fat, was significantly decreased in pro domain transgenic mice (P < 0.001). Analysis of muscle morphology indicated that cross-sectional areas of fast-glycolytic fibers (gastrocnemius) and fast-oxidative glycolytic fibers (tibialis) were larger in pro domain transgenic mice than in their controls (P < 0.01), whereas fiber number (gastrocnemius) was not different (P > 0.05). Thus, the muscular phenotype is attributable to myofiber hypertrophy rather than hyperplasia. The results of this study suggest that the over-expression of myostatin pro domain may provide an alternative to myostatin knockouts as a means of increasing muscle mass in other mammals.
منابع مشابه
Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition.
Caveolin-3, the muscle-specific isoform of caveolins, plays important roles in signal transduction. Dominant-negative mutations of the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy 1C (LGMD1C) with loss of caveolin-3. However, identification of the precise molecular mechanism leading to muscular atrophy in caveolin-3-deficient muscle has remained elusive. Myostatin, a ...
متن کاملMuscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy
Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on d...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کاملOver-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice
Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibit...
متن کاملExpression of myostatin and follistatin in Mdx mice, an animal model for muscular dystrophy.
Follistatin is a functional antagonist of several members of the TGF-beta family of secreted signaling factors, including myostatin, the most powerful inhibitor of muscle growth characterized to date. Myostatin inhibition offers a novel therapeutic strategy for muscular dystrophy by restoring skeletal muscle mass and suppressing the progression of muscle degeneration. To assess the potential be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular reproduction and development
دوره 60 3 شماره
صفحات -
تاریخ انتشار 2001